![]() 改良型触媒化スートフィルター及びこれらを製造する方法
专利摘要:
改良型スート触媒は、金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングにより少なくとも部分的に被覆されているアルカリ化合物を含む。改良型スート触媒は、触媒化ディーゼル微粒子フィルターに用いることができる。触媒化ディーゼル微粒子フィルターを製造する1つの方法において、改良型フィルターは、上にアルカリ触媒を有する多孔質セラミック体を接触させ、アルカリ触媒を有機セラミック前駆体で被覆し、実質的な量のアルカリ触媒を揮散させずに、有機セラミック前駆体を分解するのに十分な温度に雰囲気中でセラミック体を加熱して多孔質セラミック体上にスート触媒を形成することによって製造する。 公开号:JP2011507688A 申请号:JP2010539796 申请日:2008-12-18 公开日:2011-03-10 发明作者:ジエバラス,ロビン;ニルソン,ロバート,ティ.;マーティン,スティーブン,ジェイ. 申请人:ダウ グローバル テクノロジーズ インコーポレイティド; IPC主号:B01J23-04
专利说明:
[0001] 本発明は、改良型触媒化微粒子フィルターに関する。] [0002] 関連出願の相互参照 本出願は、参照により本明細書に組み込まれている、2007年12月21日に出願した米国仮出願第61/015,941号の恩典を主張するものである。] 背景技術 [0003] ディーゼルエンジンは、その動作する様式のため、スート粒子又は凝縮物の非常に微細な小滴又は2つの集合体(粒子状物質)並びに一般的な有害ガソリンエンジン排気ガス(すなわち、HC及びCO)を排出する。これらの「粒子状物質」(本明細書においてディーゼルスート)は、一部は発癌性である可能性がある縮合多核炭化水素を多く含む。] [0004] ディーゼルスートが健康に危害を与えるという認識は、ディーゼルエンジンが示すより大きい燃料効率の必要性と相反するので、ディーゼルスートの排出許容量を規制する規則が制定された。これらの努力目標を満たすために、スートフィルターが用いられている。そのようなフィルターを用いる場合、スートを燃焼させることによりフィルターを定期的に再生しなければならない。しかし、ディーゼルスートは、ディーゼルエンジンの通常の動作温度よりかなり高い温度で発火するため、ディーゼルスートの発火温度を低下させる多くの触媒が提案された。] [0005] 一般的に、例えば、日本特許出願第2001−17449号、国際公開第03/011437号、米国特許出願第2002/0132727号、米国特許出願第2006/018806号及び米国特許出願第2002/0197191号に記載されているようにアルカリ又はアルカリ酸化物を含む触媒がディーゼルスートの発火温度を実質的に有意に低下させるために用いられた。残念ながら、これらの触媒は、一般的に揮発性かつ/又はフィルターに対して破壊的であり、寿命を実用的でない短いものにする。さらに、これらの触媒は、ディーゼルスートとともに排出されるHC及びCOガスを減少させるために必要な実質的な量の貴金属触媒をさらに含む。] [0006] HC及びCO排出物にも触媒作用を及ぼすと同時にディーゼルスートの発火温度を低下させることを試みるために、希土類酸化物(例えば、米国特許第4,515,758号、米国特許出願2002/0197191、米国特許出願2002/0044897、米国特許出願2003/0124037、WO01/02083)及び卑金属酸化物などの他の酸化物も貴金属触媒とともに用いられた。残念ながら、これらの触媒は、実質的な量の高価な貴金属触媒及び/又は希土類酸化物を必要とする傾向があった。] 発明が解決しようとする課題 [0007] したがって、前述の問題の1つのような従来技術の1つ又は複数の問題を回避するためのディーゼル微粒子フィルター用の触媒を提供することが望ましいであろう。特に、長寿命を達成すると同時に、スートを酸化するために従来技術で必要であった量の高価な希土類酸化物及び貴金属触媒を排除する触媒を提供することが望ましいであろう。] 課題を解決するための手段 [0008] 本発明の第1の態様は、金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングで少なくとも部分的に被覆されているアルカリ化合物を含むスート触媒を多孔質セラミックの少なくとも一部の上に有する多孔質セラミックを含む触媒化スートフィルターである。驚くべきことに、触媒化スートフィルターは、アルカリ酸化物触媒で一般的である速やかなアルカリの揮発又は多孔質セラミックの攻撃を伴うことなく、優れたスートの燃焼、長寿命を示す。コーティングセラミックはアルカリ触媒による触媒作用を受ける炭素を含み、その触媒作用は、同様に被覆されていないアルカリ触媒と比較して、たとえあったとしても認め得るほどには終始減弱しないので、これは特に驚くべきことである。] [0009] 本発明の第2の態様は、多孔質セラミック体をアルカリ化合物と接触させる段階、アルカリ化合物を、加熱時に金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングを形成する材料で被覆する段階、及び多孔質セラミック体を加熱して、金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングをアルカリ化合物の少なくとも一部に被覆したアルカリ化合物を含むスート触媒で被覆した多孔質セラミック体を含む触媒化スートフィルターを形成する段階を含む、前記触媒化スートフィルターを形成する方法である。] [0010] 他の態様において、本発明は、金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングにより少なくとも部分的に被覆したアルカリ化合物を含むスート触媒である。次にスート触媒をハニカムなどのセラミック体に適用して、本発明の第1の態様を製造することができる。] [0011] スート触媒及び触媒化スートフィルターは、自動車、列車、トラック又は定置式発電システム(stationary power plant)の排気ガスなどの気体流からスートを除去する必要があるあらゆる用途に用いることができる。触媒化スートフィルターは、ディーゼルエンジン排気ガスからスートを除去するのに特に有用である。] 図面の簡単な説明 [0012] スートを1回負荷した後の本発明のスート触媒を有するディーゼル微粒子フィルター(実施例1)対炭素含有セラミックコーティングで被覆されていない同じアルカリ触媒を有する同じフィルター(比較例1)の再生(初回再生)中の排気中のCO2濃度のグラフである。 スートを収集し、ディーゼルエンジン上でスートを200時間再生した後の本発明のスート触媒を有するディーゼル微粒子フィルター(実施例1)対炭素含有セラミックコーティングで被覆されていない同じアルカリ触媒を有する同じフィルター(比較例1)の再生中の排気ガス中のCO2濃度のグラフである。] [0013] 触媒化スートフィルター 1つの態様において、本発明は、触媒化スートフィルターであり、スートは、ディーゼルスートについて上で述べたような炭素を主成分とした物質である。触媒化スートフィルターは、多孔質セラミックから構成される。] [0014] 多孔質セラミック体は、例えば、ディーゼルスートをろ過するために当技術分野で知られているような任意の適切なセラミックであってよい。具体例としてのセラミックは、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素及び窒化アルミニウム、酸窒化ケイ素及び炭窒化ケイ素、ムライト、コーディエライト、β−スポデューメン、チタン酸アルミニウム、ケイ酸ストロンチウムアルミニウム、ケイ酸リチウムアルミニウムなどである。好ましい多孔質セラミック体としては、炭化ケイ素、コーディエライト及びムライト又はその組合せなどが挙げられる。炭化ケイ素は、好ましくは、米国特許第6,669,751号B1並びに国際公開EP1142619A1、WO2002/070106A1に記載されているものである。他の適切な多孔質体は、WO2004/011386A1、WO2004/011124A1、US2004/0020359A1及びWO2003/051488A1により記載されている。] [0015] ムライトは、針状微細構造を有するムライトが好ましい。そのような針状セラミック多孔質体の例としては、米国特許第5,194,154号、第5,173,349号、第5,198,007号、第5,098,455号、第5,340,516号、第6,596,665号及び第6,306,335号、米国特許出願公開第2001/0038810号及び国際PCT公開WO03/082773に記載されているものが挙げられる。] [0016] 多孔質セラミック体は、一般的に約30%〜85%の多孔度を有する。好ましくは、多孔質セラミック体は、少なくとも約40%、より好ましくは少なくとも約45%、さらにより好ましくは少なくとも約50%、最も好ましくは少なくとも約55%から好ましくは多くても約80%、より好ましくは多くても約75%、最も好ましくは多くても約70%の多孔度を有する。] [0017] 多孔質セラミック体は、Cを含むセラミックコーティングを上に有するアルカリ触媒(被覆アルカリ触媒)を多孔質セラミックの少なくとも一部の上に有する。一部は、スートバランスポイントが、同様の組成のベア多孔質セラミック体と比較して低下するように多孔質セラミック体上に存在する有効な量の被覆アルカリ触媒を意味する。スートバランスポイントは、スートの沈着速度と燃焼速度が等しいところである。一般的に、多孔質セラミックの表面の少なくとも約10%が被覆アルカリ触媒により被覆されている。好ましくは、多孔質セラミック体の表面の少なくとも約20%、より好ましくは少なくとも約30%、さらにより好ましくは少なくとも約50%、最も好ましくは少なくとも約75%が触媒相により被覆されている。好ましい実施形態において、多孔質セラミックの本質的に全表面が触媒相により被覆されている。] [0018] 1つの実施形態において、被覆アルカリ触媒の少なくとも一部が多孔質セラミック体に融合されている。融合は、被覆アルカリ触媒が、共有又は極性結合により結合した多孔質セラミックに結合していることを意味する。例えば、アルカリ触媒は、米国特許出願番号第2006/018806号に記載されているような、多孔質セラミック体のセラミック粒上の粒界非晶質相として存在していてよく、また、そのようなアルカリ触媒非晶質相上に被覆されたSi及びCを含むセラミックコーティングとのセラミック粒界接合部に存在していてよい。この好ましいセミラック体において、一般的に、アルカリ触媒のすべてが多孔質セラミック体のセラミック粒に融合されている。] [0019] 先に述べたように、アルカリ触媒相は、米国特許出願番号2006/018806に記載されているように非晶質であってよいが、アルカリ酸化物などの既知のアルカリ触媒のような結晶質であってもよい。アルカリ触媒が非晶質である場合、非晶質は、一般的分析技術を用いて検出可能である長距離分子構造が存在しないことを意味する。すなわち、ある種の非常に小さい秩序構造が存在する可能性があるが、そのような秩序のサイズのため、そのような秩序を測定するための技術で、例えば、検出できないか、又は非晶質材料と実質的に異ならない。例えば、秩序ドメインは、X線回折又は電子線回折が、そのようなドメインが存在する場合、それらが最大限でも約50〜100ナノメートルのサイズであるような散漫散乱をもたらすような小さいサイズのものであってよい。] [0020] アルカリ触媒が非晶質である場合、アルカリの量が施されたコロイドのケイ酸塩、アルミン酸塩又はその組合せの量と比較して増加するとき、アルカリの小部分は炭酸塩又は重炭酸塩として沈殿する可能性がある。実例として、X線回折パターンは、X線技術のノイズの上に識別可能な小ピークを示すことがある。例えば、針状ムライト多孔質セラミック体に施されたコロイド中1:1のCs2O対SiO2のモル比では、そのような炭酸塩/重炭酸塩のピークが認められ、これらの触媒は、依然として本発明の一実施形態である。より低い比では、そのような炭酸塩/重炭酸塩のピークは、より小さくなり、より識別可能でなくなる。例えば、約1:4の比では、そのようなピークは、たとえあったとしても、バックグラウンドノイズと識別することが困難である。] [0021] アルカリ触媒は、酸化物、炭酸塩、硝酸塩又はその組合せなどのアルカリ化合物を含む。好ましくは、アルカリ触媒は酸化物である。1つの実施形態において、アルカリは、酸化物ガラスである。好ましくは、アルカリ触媒がガラスである場合、それは、Si、Al又はその組合せを含む。アルカリ触媒は、任意のアルカリ又はアルカリ原子の組合せを含んでいてよい。好ましくは、アルカリは、Na、K、Rb、Cs又はその組合せである。より好ましくは、アルカリは、Na、K、Cs又はその組合せである。さらにより好ましくは、アルカリは、K、Cs又はその組合せである。最も好ましくは、アルカリは、K又はCsである。] [0022] アルカリ触媒中のアルカリの量は、スーツの燃焼を触媒するのに十分な任意の量であってよい。例えば、非晶質アルカリガラスを用いる場合、一般的にガラス中のアルカリの量は、約0.01〜50モル%である。好ましくは、ガラス中のアルカリの量は、少なくとも約0.5モル%、より好ましくは少なくとも約1モル%、最も好ましくは少なくとも約2モル%から好ましくは高々約25モル%、より好ましくは高々約20モル%、最も好ましくは高々約15モル%である。アルカリの量は、一般的に少なくとも約0.05重量%〜約10重量%の触媒化多孔質セラミック体中に存在するアルカリの量に対応する。好ましくは、アルカリの量は、少なくとも約0.1重量%、より好ましくは少なくとも約0.2重量%、最も好ましくは少なくとも約0.3重量%から好ましくは高々約7重量%、より好ましくは高々約5重量%、最も好ましくは高々約3重量%である。] [0023] アルカリ触媒は、酸化物ガラス中に存在する場合、Si、Al又はその組合せを有していてよい。これは、ガラス中にケイ酸塩(例えば、Si−O四面体構造)、アルミン酸塩(例えば、Al−O八面体構造)又はその組合せ(アルミノケイ酸塩)が存在することを意味する。Si、Al又はその組合せの量は、例えば、一般的な操作温度(約500℃)でアルカリの揮発性が抑制されるように十分存在する限り、大きい範囲にわたり変化し得る。一般的に、Si、Al又は組合せの量は、ガラス及びガラス中に存在する可能性がある他の成分中に存在するガラス及びアルカリによって広い範囲にわたり変化し得る。例えば、Si、Al又はその組合せは、99.95〜50モル%であってよい。好ましい実施形態において、酸化物ガラスは、ケイ酸塩である。特に好ましい実施形態において、ケイ酸塩は、ケイ酸カリウム又はセシウムである。] [0024] アルカリ触媒は、上にCを含むセラミックコーティングを有する(炭素を含むセラミックコーティングで被覆されたアルカリ触媒の組合せは、本発明の態様3の「スート触媒」である)。セラミックは、一般的に金属元素或いは酸素、炭素、窒素又その組合せと結合したSi及びBのような非金属(例えば、半金属)(これは硝酸塩及び炭酸塩のような多原子陰イオンを含まないと理解される)の非晶質又は結晶質であってよい無機化合物を意味すると理解される。セラミックコーティングは、Cを含み、これは、本明細書では陰イオン(例えば、酸素「酸化物」、炭素「炭化物」又は窒素「窒化物」)の少なくとも1モル%がCであることを意味する。昇順の選択において、炭素は、セラミックコーティング中の陰イオンのモル量の少なくとも約5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、98%、99%又は本質的に100%である。本質的に100%は、微量の他の陰イオン不純物が存在する可能性があるが、これらは一般的にモルで100万分の500未満であることを意味するが、炭素含有セラミックは、大気中で水及び酸素に曝露したとき、ほぼ常に若干の表面酸素を獲得することも理解され、これは本発明により予測されている。] [0025] 1つの実施形態において、セラミックコーティングは、金属炭化物であり、金属は、遷移金属又は遷移金属の組合せ(例えば、Ti、Ni、Ta、Mo、W、Hf、Zr、Mn、Nb、Cr、V)などのあらゆる金属である。他の実施形態において、セラミックコーティングは、金属−ケイ素炭化物であり、金属は、先に述べたもののうちの1つである。他の実施形態において、セラミックコーティングは、ケイ素−ホウ素炭化物又は金属−ケイ素−ホウ素炭化物である。他の実施形態において、炭化物は、炭化ホウ素又は金属−ホウ素炭化物であり、金属は、上で述べたようなあらゆる金属及びアルミニウムであってよい。セラミックコーティングは、炭化ケイ素であってもよい。セラミックコーティングは、炭素の量が上述の通りである限り、単純炭化物の代わりに、化合物が酸−炭化物、窒化物−炭化物、酸−窒化物−炭化物であることを除いて、上のいずれか1つであってもよい。窒素又は酸素のような陰イオンが存在する場合、それらは互いに対して(N対O)任意の比であってよい。セラミックコーティングが炭素以外の他の陰イオンを有する場合、陰イオンは酸素である(すなわち、酸−炭化物)であることが好ましい。] [0026] セラミックコーティングは、アルカリ触媒の実用的寿命が延長するような任意の厚さであってよいが、スートを燃焼させるアルカリの効果を認め得るほどに低下させるほどには厚くない。認め得るほどにはとは、コーティングを施していない同じアルカリ触媒と比較して約20%を超えてバランス温度を上昇させないことを意味する。好ましくは、バランス温度は、高くても約15%、より好ましくは高くても10%、さらにより好ましくは高くても約5%上昇させず、最も好ましくは統計的に全く変化させない。一般的に、コーティングは、少なくとも約5ナノメートルから、多くても約5マイクロメートルまでである。厚さはまた、少なくとも約10、25、50、75、100、125、150、175又は200ナノメートルから多くても4、3、2、1又は0.5マイクロメートルまでの範囲にあってよい。] [0027] 1つの実施形態において、触媒の小さい微粒子(例えば、直径が1マイクロメートル未満)を有することが有利である可能性があるため、セラミックコーティングは、そのような粒子の中央に及ぶ勾配を有するコーティングであってよい。] [0028] コーティングがアルカリ触媒の実用的寿命を改善する限り、コーティングは、アルカリ触媒の表面の一部を覆うのみであってよい。実例として、コーティングは、一般的にセラミック基材上のアルカリ触媒の表面の少なくとも約50%を覆う。いくつかの実施形態において、アルカリ触媒をセラミック基材の表面に融合させることができ、したがって、大気との境界面を有するそのようなアルカリ触媒の一部以外は、炭素を含むセラミックコーティングにより被覆する必要はないことを注意されたい。一般的に、アルカリ触媒表面の少なくとも約60%、70%、80%、90%、95%、99%又はより本質的にすべてを炭素含有セラミックコーティングにより被覆する。アルカリ触媒が本明細書で述べるように基材に少なくとも部分的に融合されている場合、炭素含有コーティングにより被覆されるアルカリ触媒表面は、炭素含有セラミックコーティングにより被覆される前に大気との境界面を有するアルカリ触媒表面のみを指すことに注意されたい。] [0029] 一般的に、炭素含有セラミックコーティングは、多孔性であるが、密度が高くてよい。実例として、コーティングの多孔度は、完全に密から90%多孔度までの範囲にあってよい。多孔度は、異なる形状、分布及び連結性(例えば、開放対閉鎖多孔度)を有していてよい。一般的に全多孔度は、少なくとも約1%、5%、10%、20%又は30%から高くても約85%、80%、75%、70%、65%又は50%までである。さらに、一般的に、開放多孔度は、少なくとも約5%、10%、15%、20%又は25%から高くても約80%、75%、70%、65%、60%又は55%までである。] [0030] 驚くべきことに、炭素含有セラミックコーティングは、アルカリ触媒の触媒作用を低下させず、スート燃焼温度(バランスポイント)を低下させる可能性さえもある。さらに、前記コーティングは、スートを燃焼させるときにアルカリ触媒の実用的寿命を長くする。炭素含有セラミックコーティングは、アルカリ触媒について上で述べたように結晶質又は非晶質であってよい。好ましくは、C含有セラミックコーティングは、非晶質である。] [0031] 被覆アルカリ触媒に加えて、多孔質セラミックは、例えば、ディーゼル排気ガスにおいて有用である他の触媒も含んでいてよい。例えば、NOx触媒若しくは貯蔵化合物、HC触媒、CO触媒等が多孔質セラミック体上に存在していてよい。いくつかの任意選択の触媒の例は、以下の通りである。] [0032] 第1の具体例としての任意選択の触媒は、貴金属、卑金属及びその組合せなどの直接結合金属触媒である。貴金属触媒の例としては、白金、ロジウム、パラジウム、ルテニウム、レニウム、銀及びその合金などが挙げられる。卑金属触媒の例としては、銅、クロム、鉄、コバルト、ニッケル、亜鉛、マンガン、バナジウム、チタン、スカンジウム及びその組合せなどが挙げられる。金属触媒は、好ましくは金属の形であるが、酸化物、窒化物及び炭化物などの無機化合物として、又は多孔質セラミックのセラミック粒内の欠陥構造として存在していてよい。金属は、当技術分野で知られているような任意の適切な技術により適用することができる。例えば、金属触媒は、化学蒸着法により適用することができる。] [0033] 第2の具体例としての任意選択の触媒は、上に金属を沈着させたセラミック粒子の組合せである。これらは、一般的にウォッシュコートと呼ばれている。一般的に、ウォッシュコートは、上に金属を沈着させたゼオライト、アルミノケイ酸塩、シリカ、セリア、ジルコニア、酸化バリウム、炭酸バリウム及びアルミナ粒子などのマイクロメーターサイズのセラミック粒子を含む。金属は、直接沈着させる金属について前に述べたいずれかのものであってよい。特に好ましいウォッシュコート触媒コーティングは、上に貴金属を有するアルミナ粒子を含むものである。ウォッシュコートは、ジルコニア、バリウム、ランタン、マグネシウム及びセリウムのうちの少なくとも1つの酸化物を有するアルミナなどの複数の金属酸化物を含んでもよいことが理解される。] [0034] 第3の具体例としての任意選択の触媒は、米国特許第5,939,354号においてGoldenにより述べられているものなどの金属酸化物組成物を含むペロブスカイト型触媒である。] [0035] 非晶質アルカリ触媒(例えば、アルカリ、Si、Al又は組合せ)の場合のようなアルカリ触媒は、当技術分野で知られているような適切な方法により多孔質セラミック上に沈着させることができる。例えば、触媒成分の1つ又は複数を米国特許第4,515,758号、第4,740,360号、第5,013,705号、第5,063,192号、第5,130,109号、第5,254,519号、第5,993,762号並びに米国特許出願公開2002/0044897、2002/0197191及び2003/0124037、国際特許公開WO97/00119、WO99/12642、WO00/62923、WO01/02083及びWO03/011437並びに英国特許第1,119,180号に記載されているような方法により沈着させることができる。] [0036] 触媒化スートフィルターの形成の方法 1つの実施形態において、アルカリ触媒上に沈着し、次に、加熱すると、分解してアルカリ触媒上に炭素を含むセラミックコーティングを形成する、ケイ素、ホウ素又は金属含有有機ポリマー又は有機油(シリコーン油)をアルカリ触媒に被覆する。ポリマーが液からアルカリ触媒の粒子上に沈着するように担体液中でポリマーとアルカリ触媒を混合するような、任意の適切な方法を用いて、アルカリ金属触媒とケイ素含有ポリマーを混合することができる。沈着後、熱、真空、赤外、マイクロ波による乾燥、凍結乾燥又は単に風乾などの任意の適切な手法により、担体液を除去する。他の実施形態において、金属含有有機物を蒸発させ、気相からアルカリ触媒上に直接沈着させる。担体液を除去した後、上に前記ポリマーを有するアルカリ触媒粒子を、有機ポリマーを分解するのに十分な雰囲気中で加熱し、アルカリ触媒上に炭素含有セラミックコーティングを形成する(すなわち、スート触媒を形成する)。] [0037] 他の実例において、液体媒体中に加熱時に金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングを形成する材料を溶解させ、アルカリ触媒の前駆体粒子、前駆体小滴又はその組合せを液体媒体中に分散させる(乳濁液又は分散体)。そのような乳濁液又は分散体を形成させた後、液体媒体を除去し、残りの残留物を本明細書で述べるように加熱して、被覆アルカリ触媒を形成させる。アルカリ触媒は、加熱前又は加熱後に基材上に沈着させて、上に被覆アルカリ触媒を有する基材を形成させることができる。] [0038] 加熱の温度及び時間は、ポリマーを分解し、炭素含有セラミックコーティングを形成するのに十分なものであるが、アルカリ触媒を実質的に揮発させるほどには大きくないものでなければならない。一般的に、加熱温度は、高くても約1400℃であるが、好ましくは、昇順の選択で高くても約1350°、1300°、1250°、1200°、1150℃、1100°、1050°及び1000℃である。温度は、一般的に少なくとも500℃であり、さもなければ、分解し、炭素含有セラミックを形成するための時間が長すぎる傾向がある。一般的に温度は、少なくとも昇順で600°、650°、700°、750°及び800℃である。温度における時間は、炭素含有セラミックコーティングを形成するのに適する任意のものであってよい。一般的に、時間は数分から数日の範囲であってよく、数分から数時間の実際的な時間が一般的である。] [0039] 雰囲気は、一般的にポリマーを酸化するだけでなく、金属酸化物を生成させるような酸素が十分に欠けているものである。しかし、所望ならば、酸炭化物が生成するようなある程度の酸素が存在していてよい。一般的に、雰囲気は、不活性(例えば、希ガス)であるか、又は自原性(すなわち、密閉されており、密閉チャンバー内のポリマーの分解又はポリマーとガスとの反応により生成した雰囲気が炭素含有セラミックコーティングを形成するのに十分なものである)であってよい。還元ガス(例えば、水素)も個別に、又は他のガスと混合して用いることができる。] [0040] 炭素含有セラミックを形成させるための適切なポリマーの例は、分解時にそのようなセラミックを形成する当技術分野で知られているもののいずれかであってよい。これらの種類のポリマーは、しばしばプレセラミックポリマーと呼ばれている。具体例としてのポリマーは、米国特許第4,226,896号、第4,310,482号、第4,800,221号、第4,832,895号、第5,312,649号、第6,395,840号及び第6,770,583号並びに国防技術情報センター(Defense Technical Information Center)刊行物、Preceramic Polymers:Past, Present and Future, Seyferth、Dietmar、受入れ番号:ADA258327、1992年11月2日及びComprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics、M. Birotら、Chem. Rev.、1995年、95巻、1443〜1477頁により記載されているもののいずれかであってよい。ポリマーは、Thermal Decomposition of Commercial Silicone Oil to Produce High Yield High Surface Area SiC Nanorods、V. G. Polら、J. Phys. Chem. B、2006年、110巻、11237〜11240頁により記載されているような炭化ケイ素コーティング又は酸炭化ケイ素コーティングを製造する場合のシリコーン又はシリコーン油であってよい。特定の例は、Starfire Systems Inc.(Malta、NY)から入手可能な市販のポリマーであるSTARFIRESMP−10である。] [0041] コーティングは、上のポリマー又は他の出発化合物を用いた蒸着法及びHandbook of Tribology Materials, Coating, and Surface Treatments、B. Bhushan及びB.K. Gupta、McGraw-Hill, Inc.、NY、NY、1991年の表9.1及び9.2並びに14.4.2節(Carbide Coatings)に記載されているような他の方法により形成させることもできる。] [0042] 上述のようにスート触媒を形成させた後、一般的に上述のような多孔質ハニカムである、そのようなセラミック体上に既知の触媒を沈着させる任意の既知の方法により、多孔質セラミック体上にスート触媒を沈着させることができる。一般的に、これは、担体液中スート触媒(すなわち、炭素を含むセラミックコーティングを有するアルカリ触媒)のスラリーを調製することにより達成される。スラリーを噴霧、浸漬等の都合のよい任意の技術により多孔質セラミック体と接触させる。次にスラリーを多孔質セラミックと接触させた後、担体液の除去について上述したように、過剰な担体を除去することができる。次にさらなる加熱を用いて、多孔質セラミック体に対するスート触媒の良好な結合を保証することができる。そのような加熱の温度及び時間は、一般的にプレセラミックポリマーの分解について述べた加熱に対応する。] [0043] 他の実施形態において、アルカリ触媒を最初に多孔質セラミック体上に沈着させることができる。例として、アルカリ触媒は、アルカリを含む酸化物ガラスである場合、アルカリケイ酸塩、アルミン酸塩、又はアルミノケイ酸塩を含む液体(一般的に水)に溶解したアルカリケイ酸塩、アルミン酸塩又はその組合せなどの化合物を沈殿させることにより形成することができる。] [0044] この例において、アルカリ触媒は、多孔質セラミック体を、ケイ酸塩、アルミン酸塩又はアルミノケイ酸塩又はその組合せであるアルカリ含有化合物に曝露することにより調製する。一般的にアルカリケイ酸塩、アルミン酸塩又はアルミノケイ酸塩は、液体中に分散したコロイドである。本明細書におけるコロイドは、数による1マイクロメートル未満の平均粒径を有する粒子状物質を意味する。コロイドは、結晶質又は非晶質であってよい。好ましくは、コロイドは非晶質である。コロイドは、好ましくはNa、Cs、K又はその組合せケイ酸塩である。好ましくは、コロイドは、Cs、K又はその組合せケイ酸塩である。最も好ましくは、コロイドは、K又はCsケイ酸塩である。具体例としてのアルカリケイ酸塩、アルミン酸塩又はアルミノケイ酸塩は、当技術分野で知られており、KASIL及びN(PQ Corporation、PO Box 840、Valley Forge、PA)、ZACSIL(Zaclon Incorporated、2981 Independence Rd.、Cleveland、OH)、Sodium Silicates(Occidental Chemical Corporation、Occidental Tower、5005 LBJ Freeway、Dallas、TX)のような商標のもとで入手可能なクレー、合成コロイドなどである。] [0045] コロイドは、好ましくは小さい粒径を有し、粒子のすべてが数による直径が1マイクロメーター未満である。好ましくは、平均粒径は、数による直径が約500ナノメートル(nm)未満、より好ましくは約250nm未満、さらにより好ましくは約100nm未満、最も好ましくは約50nm未満から好ましくは少なくとも約1nm、より好ましくは少なくとも約5nm、最も好ましくは少なくとも約10nmである。] [0046] 多孔質体は、当技術分野で知られているような任意の適切な方法により前記のアルカリケイ酸塩、アルミン酸塩又はアルミノケイ酸塩に曝露することができる。例えば、コロイドの液体分散体を、噴霧、浸漬、液漬により多孔質体中に含浸させ、次いで、乾燥する。] [0047] 多孔質セラミックを例えば、コロイドと接触させた後、多孔質体を加熱して、例えば、非晶質触媒相を形成し、所望の場合には触媒相を多孔質セラミック体に融合させる。一般的に、加熱温度は、少なくとも約400℃〜約1600℃である。一般的に、該温度は、少なくとも約500℃〜約1000℃である。一般的に、雰囲気は、ガラスがケイ酸塩、アルミン酸塩又はアルミノケイ酸塩(すなわち、酸素を含むもの)であることを保証するのに十分な量の酸素を含む必要がある。一般的に、触媒成分を加熱して非晶質触媒相を形成するのに、空気が適している。所望又は必要の場合、貴金属のような他の任意選択の触媒の形成を促進するために、先に述べたのと同様な温度までの還元又は不活性雰囲気中での他の加熱を行うことができる。] [0048] アルカリ触媒が多孔質セラミック体上に定着させた後、セラミック体上に未だ沈着させていないアルカリ触媒を被覆するために述べた方法のいずれか1つにより炭素を含むセラミックコーティングで被覆する。] [0049] 実施例1 WO03/082773A1の実施例4により記載されているのと同じ方法(WO03/082773A1の実施例4にも記載さている1400℃までの熱処理を含む)で製造した0.75"(1.9cm)×0.75"(1.9cm)×3"(7.6cm)針状ムライト(ACM)ディーゼル微粒子フィルター(DPF)(200セル/in2)に、8.974gのLudox TMA 34重量%シリカ、9.747gの50重量%酢酸セシウム溶液、0.10gの50重量%クエン酸溶液及び6.364gの水を含む新たに調製した前駆体溶液6〜5mlをDPFに適用することによりケイ酸セシウム触媒(4SiO2:Cs2O)を被覆した。溶液は、室温で1〜2時間でゲル化した。DPFを120℃で一夜乾燥し、次いで、空気中で700℃で1時間焼成して、アルカリ被覆触媒DPFを形成した。] [0050] 次のように炭化ケイ素層をアルカリ触媒被覆DPFに適用した。5部のトルエンと1部のアリルヒドリドポリカルボシランSPマトリックスポリマー−Var.10(Starfire Systems Inc.、877 25th Street Watervliet NY12189)の約7mLの溶液をフィルターに適用した。過剰な溶液を振とうにより除去した。数時間風乾した後、フィルターを120℃のオーブン中に一夜入れた。フィルターを不活性ガス中で室温から400℃まで2℃/分で加熱し、次いで、600℃まで1℃/分で加熱する前に30分間保持した。600℃で1時間の後にフィルターを2℃/分で1000℃に加熱し、1時間保持し、次いで、炉内で室温まで冷却した。重量増加は5%であった。] [0051] 比較例1 SiC層を適用しなかったことを除いて実施例1と同じ方法でACMDPFを調製した(すなわち、フィルターはアルカリ触媒のみを有し、炭素を含むセラミックコーティングを有さない)。] [0052] エンジン試験 実施例1及び比較例1のACMDPFを他の14個のDPF試料とともにホルダーに入れ、発電機に接続した350ccディーゼルエンジンの排気システム内に締め付けた。エンジンに超低硫黄ディーゼル燃料を供給し、一定の負荷及びrpmのもとで運転した。排気ガスをインラインバーナーで550℃に15分間加熱することにより、フィルターの定期的な再生(約4時間ごと)を行った。最初のスートの蓄積後及び排気ガス中に200時間おいた後に実施例1及び比較例1のACM DPFを除去した(排気システムで行われた再生を数えない)。最初及び最終スート負荷を、各フィルターについて個別に排気ガス流中のCO2濃度をモニターすることができる反応器中で燃焼除去した。反応器に20リットル/分のN2中10%O2を供給し、200℃から615℃まで10℃/分で昇温した。最初の燃焼除去について記録されたデータを実施例及び比較例について図1に示す。スートの最終(200時間)燃焼除去について記録されたデータを図2に示す。] 図1 図2 [0053] 図1から、実施例及び比較例における触媒の挙動はスートの最初の燃焼除去でかなり類似していることは明らかである。すなわち、実施例1のスートの燃焼の開始、ピーク及び完了は、比較例1の約20℃以内にある。しかし、驚くべきことに、アルカリ触媒上のセラミックコーティングによる開始時でさえ、温度はより低い。] 図1 実施例 [0054] 200時間のスート収集及び再生後の実施例1の触媒は、はるかに優れている。すなわち、図2から容易に明らかになるように、スートの燃焼の開始、ピーク及び完了は、実施例1の触媒で比較例1の触媒と比較して実質的に低い。例えば、燃焼のピーク及び完了は、実施例1の触媒で比較例1の触媒と比較して100℃程度低い。これより、本発明のセラミックコーティングで被覆したアルカリ触媒が、初期の触媒性能を犠牲にしないと同時に長期の性能の大幅な改善を実現することは、容易に明らかになる。] 図2
权利要求:
請求項1 金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングにより少なくとも部分的に被覆されているアルカリ化合物を含むスート触媒。 請求項2 前記アルカリ化合物が酸化物ガラスである、請求項1に記載のスート触媒。 請求項3 前記アルカリがCs、K又はその組合せである、請求項1に記載のスート触媒。 請求項4 前記アルカリがCsである、請求項3に記載のスート触媒。 請求項5 前記ガラスがケイ酸塩である、請求項2に記載のスート触媒。 請求項6 前記炭素を含むセラミックコーティングが金属、半金属元素又はその組合せの炭化物、酸炭化物、窒化炭化物、酸窒化炭化物である、請求項1に記載のスート触媒。 請求項7 前記金属がTi、Ni、Ta、Mo、W、Hf、Zr、Mn、Nb、Cr、V又はその組合せであり、半金属元素がSi、B又はその組合せである、請求項6に記載のスート触媒。 請求項8 前記セラミックコーティングが金属−Si炭化物、金属−Si酸炭化物、B−Si炭化物、B−Si酸炭化物、SiC、Si酸炭化物又はその組合せである、請求項6に記載のスート触媒。 請求項9 前記セラミックコーティングがSiC又はSi酸炭化物である、請求項6に記載のスート触媒。 請求項10 前記セラミックコーティングがSiCである、請求項9に記載のスート触媒。 請求項11 請求項1から10に記載のスート触媒のうちのいずれか1種のスート触媒を上に有する多孔質セラミック体を含む触媒化スートフィルター。 請求項12 前記炭素を含むセラミックコーティングが少なくとも10%多孔度である、請求項1に記載のスート触媒。 請求項13 前記コーティングが少なくとも20%多孔度から約90%多孔度である、請求項12に記載のスート触媒。 請求項14 前記コーティングがアルカリ化合物の表面の少なくとも50%を被覆している、請求項13に記載のスート触媒。 請求項15 アルカリ化合物がアルミノケイ酸塩である酸化物ガラスである、請求項1に記載のスート触媒。 請求項16 触媒化スートフィルターを形成する方法であって、多孔質セラミック体をアルカリ化合物と接触させる段階、アルカリ化合物を、加熱時に金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングを形成する材料で被覆する段階、及び多孔質セラミック体を加熱して、金属、半金属元素又はその組合せに結合したCを含むセラミックコーティングをアルカリ化合物の少なくとも一部に被覆したアルカリ化合物を含むスート触媒で被覆した多孔質セラミック体を含む前記触媒化スートフィルターを形成する段階を含む、方法。 請求項17 前記Cを含むセラミックコーティングを形成する材料がSiを含む有機ポリマー又は有機油を含む、請求項16に記載の方法。 請求項18 加熱が約1100℃以下である、請求項17に記載の方法。 請求項19 前記炭素を含むコーティングが非晶質である、請求項18に記載の方法。 請求項20 前記コーティングが炭化ケイ素又は酸炭化ケイ素である、請求項19に記載の方法。
类似技术:
公开号 | 公开日 | 专利标题 KR102052324B1|2019-12-05|황화수소 차단 기능이 있는 미립자 필터 JP6379166B2|2018-08-22|触媒すすフィルタの製造およびシステム US20170151552A1|2017-06-01|Compositions of lean nox trap | systems and methods of making and using same EP2802408B1|2017-10-04|Improved nox trap EP2501464B1|2018-02-28|Zoned catalyzed soot filter RU2527462C2|2014-08-27|Фильтр для поглощения твердых частиц из отработавших газов двигателя с воспламенением от сжатия JP5447757B2|2014-03-19|触媒被覆された粒子フィルタ及びその製造方法並びにその使用 RU2438777C2|2012-01-10|Фильтр твердых частиц выхлопных газов дизельного двигателя с каталитическим покрытием, способ его изготовления и его применение EP1776994B1|2012-05-16|Catalyst-carrying filter JP3997825B2|2007-10-24|セラミックフィルタおよび触媒付セラミックフィルタ Adler2005|Ceramic diesel particulate filters EP1398069B1|2006-04-19|Exhaust treatment device US9347354B2|2016-05-24|Reduction-catalyst-coated diesel particle filter having improved characteristics JP4165400B2|2008-10-15|触媒を担持したディーゼル粒子状物質排気フィルター KR101257124B1|2013-04-22|배연가스의 정화에 이용되는 기재 상의 산화 촉매 DE602004005107T2|2007-06-28|Verfahren und Filter zur katalytischen Behandlung von Dieselabgasen EP0154145B1|1988-12-14|Einrichtung zur Reinigung der Abgase von Dieselmotoren DE60304250T2|2006-12-28|Katalytischer Filter zum Reinigen von Abgasen KR101717802B1|2017-03-27|가솔린 엔진 배기 가스용 처리 시스템 US5260241A|1993-11-09|Controlled pore size phosphate-alumina material and method for producing same JP4628676B2|2011-02-09|内燃機関排ガス浄化用触媒、その製法および内燃機関排ガスの浄化方法 DE60115363T2|2006-06-08|Katalysator zur abgasreinigung und verfahren zu seiner herstellung KR101346417B1|2014-01-02|초박형 촉매화 산화 코팅을 갖는 디젤 미립자 필터 JP5746720B2|2015-07-08|圧力平衡化された触媒付き排気物品 US5911961A|1999-06-15|Catalyst for purification of diesel engine exhaust gas
同族专利:
公开号 | 公开日 CN101855012A|2010-10-06| KR101569225B1|2015-11-13| EP2225025B1|2018-02-07| WO2009085942A1|2009-07-09| MX2010006351A|2010-07-02| EP2225025A1|2010-09-08| JP5501978B2|2014-05-28| US20090163356A1|2009-06-25| BRPI0817413A2|2015-06-16| US7928032B2|2011-04-19| CN101855012B|2016-05-04| KR20100109905A|2010-10-11| CA2701486A1|2009-07-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2011-12-13| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111212 | 2013-01-15| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130115 | 2013-01-23| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 | 2013-10-02| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 | 2013-12-05| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131204 | 2014-02-25| TRDD| Decision of grant or rejection written| 2014-03-05| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 | 2014-03-20| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140312 | 2014-03-20| R150| Certificate of patent or registration of utility model|Ref document number: 5501978 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2017-03-07| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2018-03-06| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2019-03-05| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2020-03-20| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|